Beta Amyloid Peptide: Beta Amyloid Peptide: Research Paper : Syringin Prevents Aβ 25-35-Induced Neurotoxicity in SK-N-SH and SK-N-BE Cells by Modulating miR-124-3p/BID Pathway

Beta Amyloid Peptide: Research Paper : Syringin Prevents Aβ 25-35-Induced Neurotoxicity in SK-N-SH and SK-N-BE Cells by Modulating miR-124-3p/BID Pathway

Syringin Prevents Aβ 25-35-Induced Neurotoxicity in SK-N-SH and SK-N-BE Cells by Modulating miR-124-3p/BID Pathway

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder disease, disturbing people's normal life. Syringin was mentioned to antagonize Amyloid-β (Aβ)-induced neurotoxicity. However, the action mechanism is still not fully elucidated. This study aimed to explore a molecular mechanism of syringin in defending Aβ-induced neurotoxicity. SK-N-SH and SK-N-BE cells were treated with amyloid β-protein fragment 25-35 (Aβ25-35) to induce cell neurotoxicity. The injury effects were distinguished by assessing cell viability and cell apoptosis using cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The expression of Cleaved-caspase3 (Cleaved-casp3), B cell lymphoma/leukemia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and BH3 interacting domain death agonist (BID) at the protein level was determined by western blot. The expression of miR-124-3p and BID was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-124-3p and BID was predicted by the online database starBase and confirmed by dual-luciferase reporter assay plus RNA pull-down assay. Aβ25-35 treatment inhibited cell viability and induced cell apoptosis, while the addition of syringin recovered cell viability and suppressed cell apoptosis. MiR-124-3p was significantly downregulated in Aβ25-35-treated SK-N-SH and SK-N-BE cells, and BID was upregulated. Nevertheless, the addition of syringin reversed their expression. BID was a target of miR-124-3p, and its downregulation partly prevented Aβ25-35-induced injuries. Syringin protected against Aβ25-35-induced neurotoxicity by enhancing miR-124-3p expression and weakening BID expression, and syringin strengthened the expression of miR-124-3p to diminish BID level. Syringin ameliorated Aβ25-35-induced neurotoxicity in SK-N-SH and SK-N-BE cells by regulating miR-124-3p/BID pathway, which could be a novel theoretical basis for syringin to treat AD.

Keywords: Alzheimer's disease; Aβ25–35; BID; Syringin; miR-124-3p.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33471295/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



No comments:

Post a Comment

The secret of Eta Black by Ananya Sharma

The secret of Eta Black by Ananya Sharma  A man sitting behind the bars named Eta black has no clue what is happening with him. He was searc...

Blog Archive

Pageviews

Beta Amyloid Research