Differentiating Conformationally Distinct Alzheimer's Amyloid-β Oligomers Using Liquid Crystals
Abstract
Soluble oligomers of amyloidogenic proteins like an amyloid-β (Aβ) peptide are believed to exhibit toxic effects in neurodegenerative diseases. The structural classification of oligomers indicates two fundamentally distinct oligomers, namely, fibrillar and prefibrillar oligomers that are recognized by OC and A11 conformation-specific antibodies, respectively. Previous studies have indicated that the interaction of Aβ oligomers with the lipid membrane is one of the mechanisms by which these oligomers exert their toxic effects in Alzheimer's disease. Here, we report that the orientational ordering of liquid crystals (LC) can be used to study the membrane-induced aggregation of Aβ oligomers at nanomolar concentrations. Our results demonstrate a faster fibrillation kinetics of OC-positive fibrillar Aβ oligomers with the lipid monolayer in comparison to that of the A11-positive prefibrillar Aβ oligomers. Our findings suggest a general strategy for distinguishing conformationally distinct soluble oligomers that are formed by a number of amyloidogenic proteins on lipid-decorated aqueous-LC interfaces.
This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33040538/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.
No comments:
Post a Comment