Bayesian and influence function-based empirical likelihoods for inference of sensitivity in diagnostic tests
Abstract
In medical diagnostic studies, a diagnostic test can be evaluated based on its sensitivity under a desired specificity. Existing methods for inference on sensitivity include normal approximation-based approaches and empirical likelihood (EL)-based approaches. These methods generally have poor performance when the specificity is high, and some require choosing smoothing parameters. We propose a new influence function-based empirical likelihood method and Bayesian empirical likelihood methods to overcome such problems. Numerical studies are performed to compare the finite sample performance of the proposed approaches with existing methods. The proposed methods are shown to perform better in terms of both coverage probability and interval length. A real data set from Alzheimer's Disease Neuroimaging Initiative (ANDI) is analyzed.
Keywords: Bayesian inference; confidence intervals; empirical likelihood; influence function; sensitivity.
This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/32552342/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.
No comments:
Post a Comment