Beta Amyloid Peptide: Beta Amyloid Peptide: Research Paper : Global and Regional Changes in Perivascular Space in Idiopathic and Familial Parkinson's Disease

Beta Amyloid Peptide: Research Paper : Global and Regional Changes in Perivascular Space in Idiopathic and Familial Parkinson's Disease

Global and Regional Changes in Perivascular Space in Idiopathic and Familial Parkinson's Disease

Abstract

Background: The glymphatic system, including the perivascular space (PVS), plays a critical role in brain homeostasis. Although mounting evidence from Alzheimer's disease has supported the potential role of PVS in neurodegenerative disorders, its contribution in Parkinson's disease (PD) has not been fully elucidated. Although idiopathic (IPD) and familial PD (FPD) share similar pathophysiology in terms of protein aggregation, the differential impact of PVS on PD subtypes remains unknown. Our objective was to examine the differences in PVS volume fraction in IPD and FPD compared to healthy controls (HCs) and nonmanifest carriers (NMCs).

Methods: A total of 470 individuals were analyzed from the Parkinson's Progression Markers Initiative database, including (1) IPD (n = 179), (2) FPD (LRRK2 [leucine-rich repeat kinase 2], glucocerebrosidase, or α-synuclein) (n = 67), (3) NMC (n = 101), and (4) HCs (n = 84). Total PVS volume fraction (%) was compared using parcellation and quantitation within greater white matter volume at global and regional levels in all cortical and subcortical white matter.

Results: There was a significant increase in global and regional PVS volume fraction in PD versus non-PD, particularly in FPD versus NMC and LRRK2 FPD versus NMC. Regionally, FPD and NMC differed in the medial orbitofrontal region, as did LRRK2 FPD versus NMC. Non-PD and PD differed in the medial orbitofrontal region and the banks of the superior temporal regions. IPD and FPD differed in the cuneus and lateral occipital regions.

Conclusions: Our findings support the role of PVS in PD and highlight a potentially significant contribution of PVS to the pathophysiology of FPD, particularly LRRK2. © 2021 International Parkinson and Movement Disorder Society.

Keywords: imaging; perivascular spaces; α-synuclein; leucine-rich repeat kinase 2; glucocerebrosidase.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33470460/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



No comments:

Post a Comment

The secret of Eta Black by Ananya Sharma

The secret of Eta Black by Ananya Sharma  A man sitting behind the bars named Eta black has no clue what is happening with him. He was searc...

Blog Archive

Pageviews

Beta Amyloid Research