Beta Amyloid Peptide: Beta Amyloid Peptide: Research Paper : The potential role of leukoaraiosis in remodeling the brain network to buffer cognitive decline: a Leukoaraiosis And Disability study from Alzheimer's Disease Neuroimaging Initiative

Beta Amyloid Peptide: Research Paper : The potential role of leukoaraiosis in remodeling the brain network to buffer cognitive decline: a Leukoaraiosis And Disability study from Alzheimer's Disease Neuroimaging Initiative

The potential role of leukoaraiosis in remodeling the brain network to buffer cognitive decline: a Leukoaraiosis And Disability study from Alzheimer's Disease Neuroimaging Initiative

Abstract

Background: Leukoaraiosis (LA) is a phenomenon of the brain that is often observed in elderly people. However, little is known about the role of LA in cognitive impairment in neurodegeneration and disease. This cross-sectional, retrospective Leukoaraiosis And Disability (LADIS) study aimed to characterize the relationship between brain white matter connectivity properties with LA ratings in patients with Alzheimer's disease (AD) as compared with age-matched cognitively normal controls.

Methods: Patients with AD (n=76) and elderly individuals with normal cognitive (NC) function (n=82) were classified into 3 groups, LA1, LA2, and LA3, according to the rating of their white matter changes (WMCs). Diffusion tensor imaging (DTI) data were analyzed by quantifying and comparing the white matter connectivity properties and gray matter (GM) volume of brain regions of interest (ROIs).

Results: The rich-club network properties in the AD LA1 and LA2 groups showed significant patterns of disrupted peripheral regions and reduced connectivity compared to those in the NC LA1 and LA2 groups, respectively. However, the rich-club network properties in the AD LA3 group showed similar patterns of disrupted peripheral regions and reduced connectivity compared to those in the NC LA3 group, despite there being significant hippocampal and amygdala atrophic differences between AD patients and NC elders. Compared to the NC LA1 group, the characteristic path length of white matter fiber connectivity in the NC LA3 group was significantly increased, and the brain's global efficiency, clustering coefficient, and network connectivity strength were significantly reduced (P<0.05, respectively). However, no significant differences (P>0.05) were observed in characteristic path length, reduced global efficiency, or the clustering coefficient between the NC LA3 and AD LA1 groups, or between the NC LA3 and AD LA2 groups.

Conclusions: Our findings offer some insights into a potential role of LA in cognitive impairment that may predict the development of disability in older adults. The occurrence of LA, an intermediate degenerative change, during neurodegeneration and disease may potentially lead to the remodeling of the brain network through brain plasticity. LA, therefore, representing a possible compensatory mechanism to buffer cognitive decline.

Keywords: White matter hyperintensities (WMH); brain plasticity; network-based statistic (NBS); quantitative magnetic resonance imaging (qMRI); rich club; voxel-based morphometry (VBM).


This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33392021/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



No comments:

Post a Comment

The secret of Eta Black by Ananya Sharma

The secret of Eta Black by Ananya Sharma  A man sitting behind the bars named Eta black has no clue what is happening with him. He was searc...

Blog Archive

Pageviews

Beta Amyloid Research