Beta Amyloid Peptide: Beta Amyloid Peptide: Research Paper : Prophylactic effects of sporoderm-removed Ganoderma lucidum spores in a rat model of streptozotocin-induced sporadic Alzheimer's disease

Beta Amyloid Peptide: Research Paper : Prophylactic effects of sporoderm-removed Ganoderma lucidum spores in a rat model of streptozotocin-induced sporadic Alzheimer's disease

Prophylactic effects of sporoderm-removed Ganoderma lucidum spores in a rat model of streptozotocin-induced sporadic Alzheimer's disease

Abstract

Ethnopharmacological relevance: Ganoderma lucidum (G. lucidum, Lingzhi), also known as "immortality mushroom" has been broadly used to improve health and longevity for thousands of years in Asia. G. lucidum and its spores have been used to promote health, based on its broad pharmacological and therapeutic activity. This species is recorded in Chinese traditional formula as a nootropic and has been suggested to improve cognitive dysfunction in Alzheimer's disease. However, little is known about the nootropic effects and molecular mechanism of action of G. lucidum spores.

Aim of the study: The present study investigated the protective effects of sporoderm-deficient Ganoderma lucidum spores (RGLS) against learning and memory impairments and its mechanism of action.

Materials and methods: In the Morris water maze, the effects of RGLS on learning and memory impairments were evaluated in a rat model of sporadic Alzheimer's disease that was induced by an intracerebroventricular injection of streptozotocin (STZ). Changes in amyloid β (Aβ) expression, Tau expression and phosphorylation, brain-derived neurotrophic factor (BDNF), and the BDNF receptor tropomyosin-related kinase B (TrkB) in the hippocampus were evaluated by Western blot.

Results: Treatment with RGLS (360 and 720 mg/kg) significantly enhanced memory in the rat model of STZ-induced sporadic Alzheimer's disease and reversed the STZ-induced increases in Aβ expression and Tau protein expression and phosphorylation at Ser199, Ser202, and Ser396. The STZ-induced decreases in neurotrophic factors, including BDNF, TrkB and TrkB phosphorylation at Tyr816, were reversed by treatment with RGLS.

Conclusion: These findings indicate that RGLS prevented learning and memory impairments in the present rat model of STZ-induced sporadic Alzheimer's disease, and these effects depended on a decrease in Aβ expression and Tau hyperphosphorylation and the modulation of BDNF-TrkB signaling in the hippocampus.

Keywords: BDNF-TrkB pathway; G. lucidum spores; Sporadic Alzheimer's disease; Tau hyperphosphorylation; β-amyloid.


This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33352241/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



No comments:

Post a Comment

The secret of Eta Black by Ananya Sharma

The secret of Eta Black by Ananya Sharma  A man sitting behind the bars named Eta black has no clue what is happening with him. He was searc...

Blog Archive

Pageviews

Beta Amyloid Research