Beta Amyloid Peptide: Beta Amyloid Peptide: Research Paper : Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta

Beta Amyloid Peptide: Research Paper : Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta

Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta

Abstract

Pathological accumulations of amyloid-beta (Aβ) peptide are found in retina early in Alzheimer's disease, yet its effects on retinal neuronal structure remain unknown. To investigate this, we injected fibrillized Aβ1-42 protein into the eye of adult C57BL/6 J mice and analyzed the retina, optic nerve (ON), and the superior colliculus (SC), the primary retinal target in mice. We found that retinal Aβ exposure stimulated microglial activation and retinal ganglion cell (RGC) loss as early as 1-week post-injection. Pathology was not limited to the retina, but propagated into other areas of the central nervous system. Microgliosis spread throughout the retinal projection (retina, ON, and SC), with multiplex protein quantitation demonstrating an increase in endogenously produced Aβ in the ON and SC correlating to the injected retinas. Surprisingly, this pathology spread to the opposite side, with unilateral Aβ eye injections driving increased Aβ levels, neuroinflammation, and RGC death in the opposite, un-injected retinal projection. As Aβ-mediated microglial activation has been shown to propagate Aβ pathology, we also investigated the role of the Aβ-binding microglial scavenger receptor CD36 in this pathology. Transgenic mice lacking the CD36 receptor were resistant to Aβ-induced inflammation and RGC death up to 2 weeks following exposure. These results indicate that Aβ pathology drives regional neuropathology in the retina and does not remain isolated to the affected eye, but spreads throughout the nervous system. Further, CD36 may serve as a promising target to prevent Aβ-mediated inflammatory damage.

Keywords: Alzheimer's disease; Amyloid-beta; CD36; Cluster of differentiation 36; Glaucoma; Inflammation; Retina; Superior colliculus.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33122075/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  




No comments:

Post a Comment

The secret of Eta Black by Ananya Sharma

The secret of Eta Black by Ananya Sharma  A man sitting behind the bars named Eta black has no clue what is happening with him. He was searc...

Blog Archive

Pageviews

Beta Amyloid Research