Impact of A2V Mutation and Histidine Tautomerism on Aβ42 Monomer Structures from Atomistic Simulations
Abstract
The self-assembly of amyloid-β (Aβ) peptides into senile plaques in the brain is a hallmark of Alzheimer's disease (AD) pathology. Mutation and histidine tautomerism are considered intrinsic origins in the accumulation of Aβ. As a first step toward understanding the impact of A2V mutation and histidine tautomerism on the Aβ42 isoform, we performed replica-exchange molecular dynamics (REMD) simulations to investigate the effects of histidine tautomerism on the structural properties of A2V Aβ42 peptides. There are generally more β-sheet and less α-helix secondary structures in A2V Aβ42 monomers than in WT Aβ42, implying a higher aggregation tendency in A2V Aβ42, which is consistent with previous studies. The current research will help develop the histidine tautomerism hypothesis of misfolded protein aggregation and eventually elucidate the pathogenesis of AD.
This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/32551634/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.
No comments:
Post a Comment