Methamphetamine (METH) is a highly addictive psychostimulant drug whose abuse can cause many health complications. Our previous studies have shown that METH exposure increases α-synuclein (α-syn) expression. Recently, it was shown that α-syn could be transferred from neurons to astrocytes via exosomes. However, the specific role of astrocytes in α-syn pathology involved in METH neurotoxicity remains unclear. The objective of this study was to determine whether exosomes derived from METH-treated neurons contain pathological α-syn and test the hypothesis that exosomes can transfer pathological α-syn from neurons to astrocytes. To this end, using animal and cell line coculture models, we show that exosomes isolated from METH-treated SH-SY5Y cells contained pathological α-syn. Furthermore, the addition of METH exosomes to the medium of primary cultured astrocytes induced α-syn aggregation and inflammatory responses in astrocytes. Then, we evaluated changes in nuclear receptor related 1 protein (Nurr1) expression and the levels of inflammatory cytokines in primary cultured astrocytes exposed to METH or α-syn. We found that METH or α-syn exposure decreased Nurr1 expression and increased proinflammatory cytokine expression in astrocytes. Our results indicate that α-syn can be transferred from neuronal cells to astrocytes through exosomes. When internalized α-syn accumulated in astrocytes, the cells produced inflammatory responses. Nurr1 may play a crucial role in this process and could be a therapeutic target for inflammatory damage caused by METH.
No comments:
Post a Comment