Large-Scale Structural Covariance Networks Predict Age in Middle-to-Late Adulthood: A Novel Brain Aging Biomarker
Abstract
The aging process is accompanied by changes in the brain's cortex at many levels. There is growing interest in summarizing these complex brain-aging profiles into a single, quantitative index that could serve as a biomarker both for characterizing individual brain health and for identifying neurodegenerative and neuropsychiatric diseases. Using a large-scale structural covariance network (SCN)-based framework with machine learning algorithms, we demonstrate this framework's ability to predict individual brain age in a large sample of middle-to-late age adults, and highlight its clinical specificity for several disease populations from a network perspective. A proposed estimator with 40 SCNs could predict individual brain age, balancing between model complexity and prediction accuracy. Notably, we found that the most significant SCN for predicting brain age included the caudate nucleus, putamen, hippocampus, amygdala, and cerebellar regions. Furthermore, our data indicate a larger brain age disparity in patients with schizophrenia and Alzheimer's disease than in healthy controls, while this metric did not differ significantly in patients with major depressive disorder. These findings provide empirical evidence supporting the estimation of brain age from a brain network perspective, and demonstrate the clinical feasibility of evaluating neurological diseases hypothesized to be associated with accelerated brain aging.
Keywords: aging; brain age; machine learning; neurological diseases; structural covariance network (SCN).
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/32572452/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.
No comments:
Post a Comment