1.
Trackable and Targeted Phage as Positron Emission Tomography (PET) Agent for Cancer Imaging.
Source
1. Molecular Imaging Center, Department of Radiology, University of Southern California, Los Angeles 90033, USA.
Abstract
The recent advancement of nanotechnology has provided unprecedented opportunities for the development of nanoparticle enabled technologies for detecting and treating cancer. Here, we reported the construction of a PET trackable organic nanoplatform based on phage particle for targeted tumor imaging. Method: The integrin α(v)β(3) targeted phage nanoparticle was constructed by expressing RGD peptides on its surface. The target binding affinity of this engineered phage particle was evaluated in vitro. A bifunctional chelator (BFC) 1,4,7,10-tetraazadodecane-N,N',N",N"'-tetraacetic acid (DOTA) or 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo [6.6.6] icosane-1-ylamino) methyl) benzoic acid (AmBaSar) was then conjugated to the phage surface for (64)Cu(2+) chelation. After (64)Cu radiolabeling, microPET imaging was performed in U87MG tumor model and the receptor specificity was confirmed by blocking experiments. Results: The phage-RGD demonstrated target specificity based on ELISA experiment. According to the TEM images, the morphology of the phage was unchanged after the modification with BFCs. The labeling yield was 25 ± 4% for (64)Cu-DOTA-phage-RGD and 46 ± 5% for (64)Cu-AmBaSar-phage-RGD, respectively. At 1 h time point, (64)Cu-DOTA-phage-RGD and (64)Cu-AmBaSar-phage-RGD have comparable tumor uptake (~ 8%ID/g). However, (64)Cu-AmBaSar-phage-RGD showed significantly higher tumor uptake (13.2 ± 1.5 %ID/g, P<0.05) at late time points compared with (64)Cu-DOTA-phage-RGD (10 ± 1.2 %ID/g). (64)Cu-AmBaSar-phage-RGD also demonstrated significantly lower liver uptake, which could be attributed to the stability difference between these chelators. There is no significant difference between two tracers regarding the uptake in kidney and muscle at all time points tested. In order to confirm the receptor specificity, blocking experiment was performed. In the RGD blocking experiment, the cold RGDpeptide was injected 2 min before the administration of (64)Cu-AmBaSar-phage-RGD. Tumor uptake was partially blocked at 1 h time point. Phage-RGD particle was also used as the competitive ligand. In this case, the tumor uptake was significantly reduced and the value was kept at low level consistently. Conclusion: In this report, we constructed a PET trackable nanoplatform based on phage particle and demonstrated the imaging capability of these targeted agents. We also demonstrated that the choice of chelator could have significant impact on imaging results of nano-agents. The method established in this research may be applicable to other receptor/ligand systems for theranostic agent construction, which could have an immediate and profound impact on the field of imaging/therapy and lay the foundation for the construction of next generation cancer specific theranostic agents.
- PMID:
- 22211143
- [PubMed - as supplied by publisher]
Serum bone alkaline phosphatase in assessing illness severity of infected neonates in the neonatal intensive care unit.
Source
1. State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China.
Abstract
Background: Infections can influence bone metabolism of neonates, which may lead to changes in some bone metabolism biomarkers. The purpose of this study was to determine whether serum bone alkaline phosphatase (BALP), osteocalcin (OC) and beta carboxy-terminal peptide of type I collagen (CTX), as specific biomarkers of bone metabolism, can be used to assess the severity of neonatal infections.Methods: Sixty-three neonates in the NICU were enrolled in this study. The neonates were divided into infected group (n=33) and non-infected group (n=30). The scores for neonatal acute physiology-perinatal extension II (SNAPPE-II) were calculated and interleukin-6 (IL-6), procalcitonin (PCT), BALP, OC and CTX were measured among the neonates with or without infections, and among the infected neonates before and after treatment.Results: The serum BALP levels were lower in the infected group than that in the non-infected group (p<0.01). The serum BALP levels increased markedly in the infected neonates after treatment (p<0.01). The serum BALP levels were also inversely correlated with SNAPPE-II of infected neonates before and after treatment (r=-0.56, p<0.05; r=-0.37, p<0.05, respectively). In infected neonates, the differences between serum BALP levels before and after treatment were inversely correlated with those of IL-6 levels (p<0.05). There were no significant changes in the OC, CTX and PCT levels in the infected or non-infected group before and after treatment.Conclusion: Our data suggest that serum BALP level might be used as a marker for assessing the severity of illness in infected neonates.
- PMID:
- 22211102
- [PubMed - in process]
β2-Adrenergic Receptor Agonists Modulate Human Airway Smooth Muscle Cell Migration via Vasodilator-Stimulated Phosphoprotein.
Source
Jr., Airways Biology Initiative, Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, 125 South 31st St., TRL Suite 1200, Philadelphia, PA 19104. rap@mail.med.upenn.edu.
Abstract
Severe asthma manifests as airway remodeling and irreversible airway obstruction, in part because of the proliferation and migration of human airway smooth muscle (HASM) cells. We previously reported that cyclic adenosine monophosphate-mobilizing agents, including β(2)-adrenergic receptor (β(2)AR) agonists, which are mainstay of asthma therapy, and prostaglandin E2 (PGE2), inhibit the migration of HASM cells, although the mechanism for this migration remains unknown. Vasodilator-stimulated phosphoprotein (VASP), an anticapping protein, modulates the formation of actin stress fibers during cell motility, and is negatively regulated by protein kinase A (PKA)-specific inhibitory phosphorylation at serine 157 (Ser157). Here, we show that treatment with β(2)AR agonists and PGE2 induces the PKA-dependent phosphorylation of VASP and inhibits the migration of HASM cells. The stable expression of PKA inhibitory peptide and the small interfering (si) RNA-induced depletion of VASP abolish the inhibitory effects of albuterol and PGE2 on the migration of HASM cells. Importantly, prolonged treatment with albuterol prevents the agonist-induced phosphorylation of VASP at Ser157, and reverses the inhibitory effects of albuterol and formoterol, but not PGE2, on the basal and PDGF-induced migration of HASM cells. Collectively, our data demonstrate that β(2)AR agonists selectively inhibit the migration of HASM cells via a β(2)AR/PKA/VASP signaling pathway, and that prolonged treatment with albuterol abolishes the inhibitory effect of β-agonists on the phosphorylation of VASP and migration of HASM cells because of β(2)AR desensitization.
- PMID:
- 22210825
- [PubMed - in process]
Modulation of matrix mineralization by Vwc2-like protein and its novel splicing isoforms.
Source
Department of Periodontology and Oral Biology, Boston University, Henry M. Goldman School of Dental Medicine, 700 Albany Street, Boston, MA 02118, USA.
Abstract
In search of new cysteine knot protein (CKP) family members, we found a novel gene called von Willebrand factor C domain-containing protein 2-like (Vwc2l, also known as Brorin-like) and its transcript variants (Vwc2l-1, Vwc2l-2 and Vwc2l-3). Based on the deduced amino acid sequence, Vwc2l-1 has a signal peptide and 2 cysteine-rich (CR) domains, while Vwc2l-2 lacks a part of 2nd CR domain and Vwc2l-3 both CR domains. Although it has been reported that the expression of Brorin-like was predominantly observed in brain, we found that Vwc2l transcript variants were detected in more ubiquitous tissues. In osteoblasts, the induction of Vwc2l expression was observed at matrix mineralization stage. When Vwc2l was stably transfected into osteoblasts, the matrix mineralization was markedly accelerated in Vwc2l-expressing clones compared to that in the control, indicating the modulatory effect of Vwc2l protein on osteoblastic cell function. The mechanistic insight of Vwc2l-modulation was further investigated and we found that the expression of Osterix, one of the key osteogenic markers, was significantly increased by addition of all Vwc2l isoform proteins. Taken together, Vwc2l is a novel secreted protein that promotes matrix mineralization by modulating Osterix expression likely through TGF-β superfamily growth factor signaling pathway. Our data may provide mechanistic insights into the biological functions of this novel CKP member in bone and further suggest a novel approach to enhance osteoblast function, which enables to accerelate bone formation, regeneration and healing.
Copyright © 2011. Published by Elsevier Inc.
- PMID:
- 22209847
- [PubMed - as supplied by publisher]
Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP).
Source
Deutsches Institut für DemenzPrävention (DIDP), Neurodegeneration and Neurobiology, 66421 Homburg, Germany.
Abstract
Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease.
Copyright © 2012 Elsevier Inc. All rights reserved.
- PMID:
- 22209004
- [PubMed - as supplied by publisher]
Peculiarities of copper binding to alpha-synuclein.
Source
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA. ahmadatt@umich.edu.
Abstract
Heavy metals have been implicated as the causative agents for the pathogenesis of the most prevalent neurodegenerative disease. Various mechanisms have been proposed to explain the toxic effects of metals ranging from metal-induced oxidation of protein to metal-induced changes in the protein conformation. Aggregation of a-synuclein is implicated in Parkinson's disease (PD), and various metals, including copper, constitute a prominent group of alpha-synuclein aggregation enhancers. In this study, we have systematically characterized the a-synuclein-Cu21 binding sites and analyzed the possible role of metal binding in a-synuclein fibrillation using a set of biophysical techniques, such as electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), circular dichroism (CD), and size exclusion chromatography (SEC). Our analyses indicated that a-synuclein possesses at least two binding sites for Cu21. We have been able to locate one of the binding sites in the N-terminal region. Furthermore, based on the EPR studies of model peptides and Beta-synuclein, we concluded that the suspected His residue did not appear to participate in strong Cu21 binding.
- PMID:
- 22208282
- [PubMed - in process]
Comparative Studies on IR, Raman, and Surface Enhanced Raman Scattering Spectroscopy of Dipeptides Containing ΔAla and ΔPhe.
Abstract
Three dipeptides containing a dehydroresidues (ΔAla, Δ(Z)Phe, and Δ(E)Phe) were examined by IR, Raman, and surface-enhanced Raman techniques for the first time. An effect of the size and isomer type of the β-substituent in the dehydroresidue on conformational structure of the peptide was evaluated by using the analysis of IR and Raman bands. Additionally, SERS spectroscopy got an insight in the adsorption mechanism of these species on the metal surface. SERS spectra were recorded at alkaline pH on the silver sol using visible light excitation. Dehydroresidues studied here influenced strongly SERS profile of the peptides. The most pronounced SERS signal for all dipeptides was assigned to the symmetric stretching vibration of the carboxylate ions. This indicates that the dehydropeptides studied here primarily adsorb via the deprotonated carboxylic group. Additionally, the enhanced SERS bands in the range of 1550 - 1650 cm-1 show differences in contribution of the dehydroresidue to adsorption mechanism of the studied peptides.
- PMID:
- 22208201
- [PubMed - as supplied by publisher]
Investigating the Neural Correlates of Pathological Cortical Networks in Alzheimer's Disease using Heterogeneous Neuronal Models.
Abstract
This paper describes an investigation into the pathophysiological causes of abnormal cortical oscillations in Alzheimer's disease (AD) using two heterogeneous neuronal network models. The effect of excitatory circuit disruption on the betaband power (13-30 Hz) using a conductance-based network model of 200 neurons is assessed. Then, the neural correlates of abnormal cortical oscillations in different frequency bands based on a larger network model of 1000 neurons consisting of different types of cortical neurons is also analyzed. Electroencephalography (EEG) studies in AD patients have shown that beta band power (13-30 Hz) decreased in the early stages of the disease with a parallel increase in theta band power (4-7 Hz). This abnormal change progresses with the later stages of the disease but with decreased power spectra in other fast frequency bands plus an increase in delta band power (1-3 Hz). Our results show that, despite the heterogeneity of the network models, the beta band power is significantly affected by excitatory neural and synaptic loss. Secondly, the results of modeling a functional impairment in the excitatory circuit shows that beta band power exhibits the most decrease compared with other bands. Previous biological experiments on different types of cultural excitatory neurons show that cortical neuronal death is mediated by dysfunctional ionic behavior that might specifically contribute to the pathogenesis of β-amyloid peptide (Aβ)-induced neuronal death in AD. Our study also shows that beta band power was the first affected component when the modeled excitatory circuit begins to lose neurons and synapses.
Sensitivity of Amyloid Formation by Human Islet Amyloid Polypeptide to Mutations at Residue 20.
Source
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
Abstract
Islet amyloid polypeptide (IAPP, amylin) is responsible for amyloid formation in type 2 diabetes and in islet cell transplants. The only known natural mutation found in mature human IAPP is a Ser20-to-Gly missense mutation, found with small frequency in Chinese and Japanese populations. The mutation appears to be associated with increased risk of early-onset type 2 diabetes. Early measurements in the presence of organic co-solvents showed that S20G-IAPP formed amyloid more quickly than the wild type. We confirm that the mutant accelerates amyloid formation under a range of conditions including in the absence of co-solvents. Ser20 adopts a normal backbone geometry, and the side chain makes no steric clashes in models of IAPP amyloid fibers, suggesting that the increased rate of amyloid formation by the mutant does not result from the relief of steric incompatibility in the fiber state. Transmission electronic microscopy, circular dichroism, and seeding studies were used to probe the structure of the resulting fibers. The S20G-IAPP peptide is toxic to cultured rat INS-1 (transformed rat insulinoma-1) β-cells. The sensitivity of amyloid formation to the identity of residue 20 was exploited to design a variant that is much slower to aggregate and that inhibits amyloid formation by wild-type IAPP. An S20K mutant forms amyloid with an 18-fold longer lag phase. Thioflavin T binding assays, together with experiments using a p-cyanophenylalanine (p-cyanoPhe) variant of human IAPP, show that the designed S20K mutant inhibits amyloid formation by human IAPP. The experiments illustrate how p-cyanoPhe can be exploited to monitor amyloid formation even in the presence of other amyloidogenic proteins.
Copyright © 2011. Published by Elsevier Ltd.
A new neuronal target for beta-amyloid peptide in the rat hippocampus.
Source
Centre de Psychiatrie et Neurosciences, UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
Abstract
In Alzheimer's disease, amyloid beta peptide (Aβ) accumulation is associated with hippocampal network dysfunction. Intrahippocampal injections of Aβ induce aberrant inhibitory septohippocampal (SH) network activity in vivo and impairment of memory processing. In the present study, we observed, after hippocampal Aβ treatment, a selective loss of neurons projecting to the medial septum (MS) and containing calbindin (CB) and/or somatostatin (SOM). Other GABAergic neuronal subpopulations were not altered. Thus, the present study identifies hippocamposeptal neuron populations as specific targets for Aβ deposits. We observed that in Aβ-treated rats but not in controls, glutamate agonist application induced rhythmic bursting in 55% of the slow-firing neurons in the medial septum. This suggests that hippocampal Aβ can trigger modifications of the septohippocampal pathway via the alteration of a specific neuronal population. Long-range hippocamposeptal GABA/calbindin neurons, targets of hippocampal amyloid deposits, are implicated in supporting network synchronization. By identifying this target, we contribute to the understanding of the mechanisms underlying deleterious effects of Aβ, one of the main agents of dementia in Alzheimer's disease.
Copyright © 2011 Elsevier Inc. All rights reserved.
Phosphorus Dendrimers Affect Alzheimer's (Aβ1-28) Peptide and MAP-Tau Protein Aggregation.
Abstract
Alzheimer's disease (AD) is characterized by pathological aggregation of β-amyloid peptides and MAP-Tau protein. β-amyloid (Aβ) is a peptide responsible for extracellular Alzheimer's plaque formation. Intracellular MAP-Tau aggregates appear as a result of hyperphosphorylation of this cytoskeletal protein. Small, oligomeric forms of Aβ are intermediate products that appear before the amyloid plaques are formed. These forms are believed to be most neurotoxic. Dendrimers are highly branched polymers, which may find an application in regulation of amyloid fibril formation. Several biophysical and biochemical methods, like circular dichroism (CD), fluorescence intensity of thioflavin T and thioflavin S, transmission electron microscopy, spectrofluorimetry (measuring quenching of intrinsic peptide fluorescence) and MTT-cytotoxicity assay, were applied to characterize interactions of cationic phosphorus-containing dendrimers of generation 3 and generation 4 (CPDG3, CPDG4) with the fragment of amyloid peptide (Aβ1-28) and MAP-Tau protein. We have demonstrated that CPDs are able to affect β-amyloid and MAP-Tau aggregation processes. A neuro-2a cell line (N2a) was used to test cytotoxicity of formed fibrils and intermediate products during the Aβ1-28 aggregation. It has been shown that CPDs might have a beneficial effect by reducing the system toxicity. Presented results suggest that phosphorus dendrimers may be used in the future as agents regulating the fibrilization processes in Alzheimer's disease.
INITIAL INSIGHTS INTO THE STRUCTURE-ACTIVITY RELATIONSHIPS OF AVIAN DEFENSINS.
Source
Lund University, Sweden;
Abstract
Numerous β-defensins have been identified in birds and the potential use of these peptides as alternatives to antibiotics has been proposed, in particular to fight antibiotic-resistant and zoonotic bacterial species. Little is known about the mechanism of antibacterial activity of avian β-defensins (AvBDs), and the present work was carried out to obtain initial insights into the involvement of structural features or specific residues in the antimicrobial activity of chicken AvBD2. Chicken AvBD2 and its enantiomeric counterpart were chemically synthesized. Peptide elongation and oxidative folding were both optimized. The similar antimicrobial activity measured for both L- and D- proteins clearly indicates that there is no chiral partner. Therefore the bacterial membrane is in all likelihood the primary target. Moreover, this work evidences that the three-dimensional fold is required for an optimal antimicrobial activity, in particular for Gram-positive bacterial strains. The three-dimensional NMR structure of chicken AvBD2 defensin displays the structural 3-stranded antiparallel β-sheet characteristic of β-defensins. The surface of the molecule does not display any amphipathic character. In light of this new structure and of the king penguin AvBD103b defensin structure, the consensus sequence of avian β-defensin's family was analyzed. Well conserved residues were highlighted and the potential strategic role of the lysine 31 residue of AvBD2 emphasized. The synthetic AvBD2-K31A variant displayed substantial N-terminal structural modifications and a dramatic decrease in activity. Taken together, these results demonstrate the structural as well as the functional role of the critical lysine 31 residue in antimicrobial activity.
Spliceosome Protein (SRp) Regulation of Glucocorticoid Receptor Isoforms and Glucocorticoid Response in Human Trabecular Meshwork Cells.
Source
Department of Cell Biology and Anatomy;
Abstract
Introduction:Glaucoma is a leading cause of visual impairment and blindness, with elevated intraocular pressure (IOP) as a major causative risk factor. Glucocorticoid (GC) therapy causes morphological and biochemical changes in the trabecular meshwork (TM), an ocular tissue involved in regulating IOP, which can lead to the development of glaucoma in susceptible individuals (steroid responders). Steroid responders comprise 40% of the general population and are at higher risk of developing glaucoma. In addition, a majority of glaucoma patients are steroid responders. Differential distribution of various isoforms of GC receptor (GR) may be responsible for this heterogeneity in the steroid response. The alternatively spliced GRβ isoform acts as dominant negative regulator of classical GRα transcriptional activity. mRNA splicing is mediated by spliceosomes, which include SR proteins (SRps). The purpose of our study was to determine whether specific SRps regulate levels of these isoforms and thereby GC response in TM cells.Methods:Quantitative RT-PCR, western immunoblotting and immunocytochemistry were used to determine the differential expression of different SRps (SRp20, 30c and 40) in human normal and glaucomatous TM cell strains. Bioinformatics was used to find putative binding sites for SRp20 and SRp40 on exon9 of the GR gene. A peptidemodulator of splicing (bombesin) and SRp expression vectors were used to modulate SRps levels and determine their effects on GRα/GRβ ratios as well as dexamethasone (DEX) responsiveness via GRE- luciferase reporter activity, fibronectin, and myocilin induction in TM cells.Results:SRp20, SRp30c and SRp40 regulate GR splicing and the GC response in TM cells. Modulation of SRps levels altered the GRα/β ratio that correlated with DEX responsiveness. Bombesin decreased SRp20; increased SRp30c, SRp40 levels and GR β/α ratio, and suppressed DEX response in TM cells.Conclusion:Relative levels of SRp20, SRp30c, and SRp40 in TM cells control differential expression of the two alternatively spliced isoforms of the GR and thereby regulate GC responsiveness. Different levels and/or activities of these SRps may account for differential GC sensitivity among the normal and glaucoma populations.
Unstable Angina and Non-ST Elevation Myocardial Infarction.
Source
TIMI Study Group, Boston, Massachusetts, United States.
Abstract
Non ST elevation acute coronary syndromes (NSTE-ACS) are responsible for approximately 1 million admissions to U.S. hospitals and twice as many to European hospitals each year. Thus, it is one of the most common serious illnesses in adults, and it is associated with an in-hospital mortality of approximately 5%. The most common cause is rupture of an atherosclerotic coronary plaque, resulting in subtotal coronary occlusion. Diagnosis is based on the clinical picture of retrosternal chest pain, aided by electrocardiographic findings of ST segment deviations and biomarker abnormalities (elevation of troponin and natriuretic peptides) and cardiac imaging (myocardial scans showing perfusion defects). Treatment involves anti-ischemic agents (nitrates and beta blockers), antiplatelet drugs (aspirin, P2Y12 and GP IIb/IIIa receptor blockers) and anticoagulants (unfractionated and low molecular heparins). Patients should undergo risk stratification and those with high risk factors should undergo coronary arteriography promptly with the intent to carry out coronary revascularization. Those at low risk should continue to receive intensive anti-ischemic and anti-thrombotic therapy. At discharge, patients should receive intensive lipid lowering therapy with high doses of a statin, as tolerated.
Statins in Unconventional Secretion of Insulin-Degrading Enzyme and Degradation of the Amyloid-β Peptide.
Source
Department of Neurology, University of Bonn, Bonn, Germany.
Abstract
Population-based studies demonstrated that statins might decrease the risk of developing Alzheimer's disease (AD). Statins inhibit the 3-hydroxy-3-methyl-glutaryl-coenzyme-A reductase and thereby de novo synthesis of cholesterol. Cell culture and animal studies indicated that cholesterol affects the proteolytic processing of the amyloid precursor protein and the generation of amyloid-β (Aβ). Recently, we have demonstrated that statins can also stimulate the degradation of Aβ. The statin-induced clearance of Aβ could be attributed to increased release of the insulin-degrading enzyme (IDE) via an exosome-related unconventional secretory pathway. Interestingly, this statin-induced secretion of exosome-associated IDE was independent of cellular cholesterol concentrations, but rather caused by impairment of isoprenoid biosynthesis and protein prenylation. We further identified a new hexapeptide sequence in the C-terminal region of IDE, named the SlyX motif that is critically involved in IDE secretion. Taken these findings together, the increased clearance of Aβ by stimulated secretion of IDE might contribute to the protective effects of statins against AD.
Copyright © 2011 S. Karger AG, Basel.
p53, a Pivotal Effector of a Functional Cross-Talk Linking Presenilins and Pen-2.
Source
Institut de Pharmacologie Moléculaire et Cellulaire et Institut de NeuroMédecine Moléculaire, Equipe Labellisée Fondation pour la Recherche Médicale, Valbonne, France.
Abstract
The γ-secretase is a multiprotein complex responsible for the ultimate cut yielding amyloid-β peptides and their N-terminal truncated species. This complex is composed of at least four distinct entities, namely presenilin-1 (PS1) or PS2, anterior pharynx defective-1, presenilin enhancer-2 (Pen-2) and nicastrin. Very few studies examined the transcriptional regulation of this complex, and more precisely, whether some of the members functionally interact. Here, we summarize our previous data documenting the fact that Pen-2 controls cell death in a p53-dependent manner and our recent demonstration of a pivotal role of p53 as a regulator of Pen-2 transcription. As PS trigger amyloid precursor protein intracellular domain-dependent regulation of p53, our studies delineate a feedback control mechanism by which PS and Pen-2 functionally interact in a p53-dependent manner.
Copyright © 2011 S. Karger AG, Basel.
Fibrillar Amyloid-β1-42 Modifies Actin Organization Affecting the Cofilin Phosphorylation State: A Role for Rac1/cdc42 Effector Proteins and the Slingshot Phosphatase.
Source
Laboratory of Cellular and Molecular Neurosciences, University of Chile and International Center for Biomedicine (ICC), Santiago, Chile.
Abstract
The neuronal cytoskeleton regulates numerous processes that occur in normal homeostasis. Under pathological conditions such as those of Alzheimer's disease (AD), major alterations in cytoskeleton organization have been observed and changes in both microtubules and actin filaments have been reported. Many neurodegenerative consequences of AD are linked to the production and accumulation of amyloid peptides (Aβ) and their oligomers, produced from the internal cleavage of the amyloid-β protein precursor. We previously reported that fibrillar Aβ1-42 (fAβ) treatment of hippocampal neurons induced an increase in Rac1 and Cdc42 activities linking fAβ effects with changes in actin dynamics. Here we show fAβ-induces increased activity of PAK1 and cyclin-dependent kinase 5, and that p21-activated kinase (PAK1) activation targets the LIMK1-cofilin signaling pathway. Increased cofilin dephosphorylation under conditions of enhanced LIM-Kinase 1 (LIMK1) activity suggests that fAβ co-stimulates bifurcating pathways impacting cofilin phosphorylation. Overexpression of slingshot (SSH) prevents the augment of F-actin induced by fAβ after 24 h, suggesting that fAβ-induced changes in actin assembly involve both LIMK1 and SSH. These results suggest that fAb may alter the PAK1/LIMK1/cofilin axis and therefore actin organization in AD.
Pleiotropic Effects of Glucagon-like Peptide-1 (GLP-1)-Based Therapies on Vascular Complications in Diabetes.
Source
Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan. shoichi@med.kurume-u.ac.jp.
Abstract
Accelerated atherosclerosis and microvascular complications are the leading causes of coronary heart disease, end-stage renal failure, acquired blindness and a variety of neuropathies, which could account for disabilities and high mortality rates in patients with diabetes. Glucagon-like peptide-1 (GLP-1) belongs to the incretin hormone family. L cells in the small intestine secrete GLP-1 in response to food intake. GLP-1 not only enhances glucose-evoked insulin release from pancreatic β-cells, but also suppresses glucagon secretion from pancreatic α-cells. In addition, GLP-1 slows gastric emptying. Therefore, enhancement of GLP-1 secretion is a potential therapeutic target for the treatment of type 2 diabetes. Dipeptidyl peptidase-4 (DPP-4) is a responsible enzyme that mainly degrades GLP-1, and the half-life of circulating GLP-1 is very short. Recently, DPP-4 inhibitors and DPP-4-resistant GLP-1 receptor (GLP-1R) agonists have been developed and clinically used for the treatment of type 2 diabetes as a GLP-1-based medicine. GLP-1R is shown to exist in extra-pancreatic tissues such as vessels, kidney and heart, and could mediate the diverse biological actions of GLP-1 in a variety of tissues. So, in this paper, we review the pleiotropic effects of GLP-1-based therapies and its clinical utility in vascular complications in diabetes.
- PMID:
- 22204436
- [PubMed - in process]
Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties.
Source
Institute of Marine Sciences, Federal University of Ceará, Fortaleza, CE 60165-081, Brazil. gandhi.radis@ufc.br.
Abstract
Crotamine, a low molecular weight cationic polypeptide from the venom of the South American rattlesnake Crotalus durissus terrificus is a natural cell-penetrating peptide with functional versatility. The presence of nine lysine residues and three disulfide bonds renders crotamine highly compact, stable and positively charged. Topologically, crotamine adopts an ancient β-defensin fold that is found in diverse families of endogenous and venom polypeptides dedicated to host defense. Crotamine is unique among several classes of bioactive peptides because it possesses both cell penetrating and antimicrobial activities and selective biological action toward some cell types at a given cell cycle phase. Because it can rapidly and efficiently translocate into actively proliferating cells, crotamine is being investigated for labeling highly replicating cells and for use as a chemotherapeutic adjuvant. Peptides derived from crotamine, nucleolar targeting peptides (NrTPs), have been designed and are being studied. NrTPs retain some crotamine properties, such as efficient cellular uptake and preferential nuclear localization whereas they improve upon other properties. For example, NrTPs are smaller than crotamine, show higher preferential nucleolar localization, and better facilitate ZIP-code localization of therapeutic proteins.
- PMID:
- 22204433
- [PubMed - in process]
Plant defensins and defensin-like peptides - biological activities and biotechnological applications.
Source
Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia,Universidade Estadual do Norte Fluminense; Av. Alberto Lamego, 2000;Campos dos Goytacazes-RJ RJ; CEP: 28013-600; Brazil. andre@uenf.br.
Abstract
Plant defensins are cationic peptides that are ubiquitous within the plant kingdom and belong to a large superfamily of antimicrobial peptides found in several organisms collectively called defensins. The primary structure of these peptidesincludes 45 to 54 amino acid residues with considerable sequence variation. At the level of three-dimensional structure, they are small and globular, composed of three anti-parallel β-sheets and one α-helix, which is highly conserved among these peptides. The three-dimensional structure is stabilized by four disulfide bridges formed by eight strictly conserved Cys residues. Two of these bridges compose the Cys-stabilized α-helix β-strand motif, which is found in other peptideswith biological activities. Plant defensins present numerous biological activities, such as inhibiting protein synthesis, ion channel function and α-amylase and trypsin activity; impairing microbial, root hair and parasitic plant growth; mediating abiotic stress and Zn tolerance; altering ascorbic acid redox state; stimulating sweet taste sensation; serving as epigenetic factors; affecting self-incompatibility; and promoting male reproductive development. Some of these biological activities, such as microbial growth inhibition and sweet taste induction, coupled with a scaffold that provides thesepeptides with incredible physicochemical resistance to harsh environments and the potential for simple amino acid substitution, raise the opportunity to improve the function of defensins or introduce new activities, endowing thesepeptides with great biotechnological and medical significance. This review will cover the biological activities and roles of plant defensins and will focus on their application in the field of biotechnology.
No comments:
Post a Comment