Beta Amyloid Peptide: February 2021

Beta Amyloid Peptide: Research Paper :Association of PSP phenotypes with survival: A brain-bank study

Association of PSP phenotypes with survival: A brain-bank study

Abstract

Introduction: The MDS-PSP criteria expand the phenotypic spectrum of PSP by adding to Richardson's syndrome (PSP-RS) other presentations such as PSP-parkinsonism (PSP-P), PSP-pure-gait-freezing (PSP-PGF), PSP-speech-language (PSP-SL), PSP-frontal (PSP-F), PSP-postural-instability (PSP-PI) and PSP-corticobasal-syndrome (PSP-CBS). Evidence about the prognostic differences between PSP phenotypes is scarce and focused on PSP-RS vs. non-PSP-RS. Using a brain-bank cohort we assessed PSP survival not only in PSP-RS vs. non-PSP-RS, but also in PSP-RS + cortical vs. subcortical phenotypes. Besides, we assessed sensitivity and specificity of the MDS-PSP criteria in of PSP and other degenerative parkinsonisms.

Methods: We retrospectively applied the MDS-PSP diagnostic criteria to 32 definite PSP cases and 30 cases with other degenerative parkinsonian syndromes (Parkinson's disease [PD; n = 11], multiple system atrophy [MSA; n = 11], corticobasal degeneration [CBD; n = 8]). We conducted survival statistics in neuropathologically confirmed PSP cases considering PSP-RS vs. non-PSP-RS and PSP-RS + PSP-cortical (PSP-F + PSP-SL + PSP-CBS) vs. PSP-subcortical (PSP-P + PSP-PGF) phenotypes. We also adjusted survival analyses for PSP tau scores.

Results: Diagnostic sensitivity was 100% and specificity ranged from 47% to 87% when excluding cases that met the "suggestive of PSP" definition early in their disease course but with other clinical features better matching with a non-PSP pathological diagnosis. Survival was significantly shorter in PSP-RS vs. non-PSP-RS cases, but it was more markedly shorter in PSP-RS + PSP-cortical vs. PSP-subcortical, independently of PSP tau scores, which were not associated with survival.

Conclusions: PSP-subcortical phenotypes appear to have longer survival than PSP-RS and cortical phenotypes. This might be of prognostic relevance when informing patients upon clinical diagnosis.

Keywords: PSP; PSP-P; PSP-PGF; Phenotype; Prognosis; Richardson's syndrome; Survival.


This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33581485//" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer's action: Design, synthesis, crystal structure and in-vitro biological evaluation

Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer's action: Design, synthesis, crystal structure and in-vitro biological evaluation

Abstract

Alzheimer's disease (AD) is multifactorial, progressive neurodegeneration with impaired behavioural and cognitive functions. The multitarget-directed ligand (MTDL) strategies are promising paradigm in drug development, potentially leading to new possible therapy options for complex AD. Herein, a series of novel MTDLs phenylsulfonyl-pyrimidine carboxylate (BS-1 to BS-24) derivatives were designed and synthesized for AD treatment. All the synthesized compounds were validated by 1HNMR, 13CNMR, HRMS, and BS-19 were structurally validated by X-Ray single diffraction analysis. To evaluate the plausible binding affinity of designed compounds, molecular docking study was performed, and the result revealed their significant interaction with active sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The synthesized compounds displayed moderate to excellent in vitro enzyme inhibitory activity against AChE and BuChE at nanomolar (nM) concentration. Among 24 compounds (BS-1 to BS-24), the optimal compounds (BS-10 and BS-22) displayed potential inhibition against AChE; IC50 = 47.33 ± 0.02 nM and 51.36 ± 0.04 nM and moderate inhibition against BuChE; IC50 = 159.43 ± 0.72 nM and 153.3 ± 0.74 nM respectively. In the enzyme kinetics study, the compound BS-10 displayed non-competitive inhibition of AChE with Ki = 8 nM. Respective compounds BS-10 and BS-22 inhibited AChE-induced Aβ1-42 aggregation in thioflavin T-assay at 10 μM and 20 μM, but BS-10 at 10 μM and 20 μM concentrations are found more potent than BS-22. In addition, the aggregation properties were determined by the dynamic light scattering (DLS) and was found that BS-10 and BS-22 could significantly inhibit self-induced as well as AChE-induced Aβ1-42 aggregation. The effect of compounds (BS-10 and BS-22) on the viability of MC65 neuroblastoma cells and their capability to cross the blood-brain barrier (BBB) in PAMPA-BBB were further studied. Further, in silico approach was applied to analyze physicochemical and pharmacokinetics properties of the designed compounds via the SwissADME and PreADMET server. Hence, the novel phenylsulfonyl-pyrimidine carboxylate derivatives can act as promising leads in the development of AChE inhibitors and Aβ disaggregator for the treatment of AD.

Keywords: Acetylcholinesterase; Alzheimer's disease; Amyloid beta; Multitarget-directed ligand; Phenylsulfonyl-pyrimidine carboxylate derivatives.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33582578/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport

α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport

Abstract

Voltage-dependent anion channel (VDAC) is the most ubiquitous channel at the mitochondrial outer membrane, and is believed to be the pathway for calcium entering or leaving the mitochondria. Therefore, understanding the molecular mechanisms of how VDAC regulates calcium influx and efflux from the mitochondria is of particular interest for mitochondrial physiology. When the Parkinson's disease (PD) related neuronal protein, alpha-synuclein (αSyn), is added to the reconstituted VDAC, it reversibly and partially blocks VDAC conductance by its acidic C-terminal tail. Using single-molecule VDAC electrophysiology of reconstituted VDAC we now demonstrate that, at CaCl2 concentrations below 150 mM, αSyn reverses the channel's selectivity from anionic to cationic. Importantly, we find that the decrease in channel conductance upon its blockage by αSyn is hugely overcompensated by a favorable change in the electrostatic environment for calcium, making the blocked state orders-of-magnitude more selective for calcium and thus increasing its net flux. -Our findings with higher calcium concentrations also demonstrate that the phenomenon of "charge inversion" is taking place at the level of a single polypeptide chain. Measurements of ion selectivity of three VDAC isoforms in CaCl2 gradient show that VDAC3 exhibits the highest calcium permeability among them, followed by VDAC2 and VDAC1, thus pointing to isoform-dependent physiological function. Mutation of the E73 residue - VDAC1 purported calcium binding site - shows that there is no measurable effect of the mutation in either open or αSyn-blocked VDAC1 states. Our results confirm VDACs involvement in calcium signaling and reveal a new regulatory role of αSyn, with clear implications for both normal calcium signaling and PD-associated mitochondrial dysfunction.

Keywords: Calcium signaling; Charge inversion; Intrinsically disordered proteins; Ion selectivity, beta-barrel channels; Single-molecule measurement; Voltage-dependent anion channel.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33578201/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome

Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome

Abstract

Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer's disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs "mitovesicles." We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33579698/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : C9orf72 and the Care of the Patient With ALS or FTD: Progress and Recommendations After 10 Years

C9orf72 and the Care of the Patient With ALS or FTD: Progress and Recommendations After 10 Years

Abstract

The 2011 discovery of the pathogenic hexanucleotide repeat expansion (HRE) in C9orf72, the leading genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), marked a breakthrough in the effort to unravel the etiology of these conditions. Ten years later, clinicians are still working to integrate the implications of this discovery into the care of individuals with ALS and/or FTD. Consensus management guidelines for ALS do not comprehensively address the issue of genetic testing, and questions remain about whom to test, what counseling should be provided before and after testing, laboratory methods, and test interpretation. These challenges have contributed to inconsistent clinical practices and present barriers to patients wishing to access testing. This review summarizes the clinical impact of the discovery of the C9orf72 HRE, outlines ongoing challenges, and provides recommendations for C9orf72 testing, counseling, and research.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33575483/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : Can Anti-β-amyloid Monoclonal Antibodies Work in Autosomal Dominant Alzheimer Disease?

Can Anti-β-amyloid Monoclonal Antibodies Work in Autosomal Dominant Alzheimer Disease?

Abstract

The dominant theory of Alzheimer disease (AD) has been that amyloid-β (Aβ) accumulation in the brain is the initial cause of the degeneration leading to cognitive and functional deficits. Autosomal dominant Alzheimer disease (ADAD), in which pathologic mutations of the amyloid precursor protein (APP) or presenilins (PSENs) genes are known to cause abnormalities of Aβ metabolism, should thus offer perhaps the best opportunity to test anti-Aβ drugs. Two long-term preventive studies (Dominantly Inherited Alzheimer Network Trials Unit Adaptive Prevention Trial [DIAN-TU-APT] and Alzheimer Preventive Initiative-ADAD) were set up to evaluate the efficacy of monoclonal anti-Aβ antibodies (solanezumab, gantenerumab, and crenezumab) in carriers of ADAD, but the results of the DIAN-TU-APT study have shown that neither solanezumab nor gantenerumab slowed cognitive decline in 144 subjects with ADAD followed for 4 years, despite one of the drugs (gantenerumab) significantly affected biomarkers relevant to their intended mechanism of action. Surprisingly, solanezumab significantly accelerated cognitive decline of both asymptomatic and symptomatic subjects. These failures further undermine the Aβ hypothesis and could support the suggestion that ADAD is triggered by accumulation of other APP metabolites, rather than Aβ.


This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33575481/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy

The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy

Abstract

While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.

Keywords: Antioxidants; Epigenetic; Gut microbiota; Klotho; Neurodegeneration; Resveratrol; Senescence.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33571701/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : Crowded organelles, lipid accumulation, and abnormal membrane tubulation in cellular models of enhanced α-synuclein membrane interaction

Crowded organelles, lipid accumulation, and abnormal membrane tubulation in cellular models of enhanced α-synuclein membrane interaction

Abstract

Previous work from our group showed that certain engineered missense mutations to the α-synuclein (αS) KTKEGV repeat motifs abrogate the protein's ability to form native multimers. The resultant excess monomers accumulate in lipid-membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial Parkinson's disease mutants such as E46K. We presented an initial characterization of the lipid-rich inclusions and found similarities to the αS- and vesicle-rich inclusions that form in baker's yeast when αS is expressed. We also discussed, with some caution, a possible role of membrane-rich inclusions as precursors to filamentous Lewy bodies, the widely accepted hallmark pathology of Parkinson's disease and other synucleinopathies. In the meantime, advances in the microscopic characterization of Lewy bodies have highlighted the presence of crowded organelles and lipid membranes in addition to αS accumulation. This prompted us to revisit the αS inclusions caused by our repeat motif variants in neuroblastoma cells. In addition to our previous characterization, we found that these inclusions can often be seen by brightfield microscopy, overlap with endogenous vesicle markers in immunofluorescence experiments, stain positive for lipid dyes, and can be found to be closely associated with mitochondria. We also observed abnormal tubulation of membranes, which was subtle in inducible lines and pronounced in cells that transiently expressed high amounts of the highly disruptive KTKEGV motif mutant "KLKEGV". Membrane tubulation had been reported before as an αS activity in reductionist systems. Our in-cellulo demonstration now suggests that this mechanism could possibly be a relevant aspect of aberrant αS behavior in cells.

Keywords: Alpha-synuclein; Lipids; Parkinson's disease; Vesicle trafficking.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33571519/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : A theoretical study of polymorphism in VQIVYK fibrils

A theoretical study of polymorphism in VQIVYK fibrils

Abstract

The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33571490/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases

Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases

Abstract

Neurodegenerative diseases (NDs) are one of major public health problems and their impact is continuously growing. Curcumin has been proposed for the treatment of several of these pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD) due to the ability of this molecule to reduce inflammation and aggregation of involved proteins. Nevertheless, the poor metabolic stability and bioavailability of curcumin reduce the possibilities of its practical use. For these reasons, many curcumin derivatives were synthetized in order to overcome some limitations. In this review will be highlighted recent results on modification of curcumin scaffold in the search of new effective therapeutic agents against NDs, with particular emphasis on AD.

Keywords: Alzheimer's disease; amyloid; curcumin; tau.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33572457/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



Beta Amyloid Peptide: Research Paper : Hidden phenotypes of PINK1/Parkin knockout mice

Hidden phenotypes of PINK1/Parkin knockout mice

Abstract

PINK1, a serine/threonine ubiquitin kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target damaged mitochondria to the lysosome in a process called mitophagy. This review will cover what we have learned from PINK1 and Parkin knockout (KO) mice. Systemic PINK1 and Parkin KO mouse models haven't faithfully recapitulated early onset forms of Parkinson's disease found in humans with recessive mutations in these genes. However, the utilization of these mouse models has given us insight into how PINK1 and Parkin contribute to mitochondrial quality control and function in different tissues beyond the brain such as in heart and adipose tissue. Although PINK1 and Parkin KO mice have been generated over a decade ago, these models are still being used today to creatively elucidate cell-type specific functions. Recently, these mouse models have uncovered that these proteins contribute to innate immunity and cancer phenotypes.

Keywords: PINK1; Parkin; knockout mouse; mitophagy.

This article originally appeared in the "https://pubmed.ncbi.nlm.nih.gov/33571581/" and has their copyrights. We do not claim copyright on the content. This information is for research purposes only. This Blog is made available by publishers for educational purposes only as well as to give you general information and a general understanding , not to provide specific advice. By using this blog site you understand that there is no client relationship between you and the Blog publisher. The Blog should not be used as a substitute for competent research advice.  



The secret of Eta Black by Ananya Sharma

The secret of Eta Black by Ananya Sharma  A man sitting behind the bars named Eta black has no clue what is happening with him. He was searc...

Blog Archive

Pageviews

Beta Amyloid Research